29 декабря 2011
Решая задачи по теории вероятностей, мы постоянно используем одну и ту же формулу, которая одновременно является классическим определением вероятности:
где k — число благоприятных исходов, n — общее число исходов (см. «Тест по теории вероятностей»).
И эта формула прекрасно работает до тех пор, пока задачи были легкими, а числа, стоящие в числителе и знаменателе — очевидными.
Однако последние пробные экзамены показали, что в настоящем ЕГЭ по математике могут встречаться значительно более сложные конструкции. Отыскание значений n и k становится проблематичным. В таком случае на помощь приходит комбинаторика. Ее законы работают там, где искомые значения не выводятся непосредственно из текста задачи.
В сегодняшнем уроке не будет строгих формулировок и длинных теорем — они слишком сложны и, к тому же, совершенно бесполезны для решения настоящих задач B6. Вместо этого мы рассмотрим простые правила и разберем конкретные задачи, которые действительно встречаются на ЕГЭ. Итак, поехали!
Число сочетаний и факториалы
Пусть имеется n объектов (карандашей, конфет, бутылок водки — чего угодно), из которых требуется выбрать ровно k различных объектов. Тогда количество вариантов такого выбора называется числом сочетаний из n элементов по k. Это число обозначается Cnk и считается по специальной формуле.
Обозначение:
Выражение n! читается как «эн-факториал» и обозначает произведение всех натуральных чисел от 1 до n включительно: n! = 1 · 2 · 3 · … · n.
Кроме того, в математике по определению считают, что 0! = 1 — подобный бред редко, но все же встречается в задачах по теории вероятностей.
Что дает нам эта формула? На самом деле, без нее не решается практически ни одна серьезная задача.
К сожалению, в школе совершенно не умеют работать с факториалами. Кроме того, в формуле числа сочетаний очень легко запутаться: где стоит и что обозначает число n, а где — k. Поэтому для начала просто запомните: меньшее число всегда стоит сверху — точно так же, как и в формуле определения вероятности (вероятность никогда не бывает больше единицы).
Для лучшего понимания разберем несколько простейших комбинаторных задач:
Задача. У бармена есть 6 сортов зеленого чая. Для проведения чайной церемонии требуется подать зеленый чай ровно 3 различных сортов. Сколькими способами бармен может выполнить заказ?
Тут все просто: есть n = 6 сортов, из которых надо выбрать k = 3 сорта. Число сочетаний можно найти по формуле:
Задача. В группе из 20 студентов надо выбрать 2 представителей для выступления на конференции. Сколькими способами можно это сделать?
Опять же, всего у нас есть n = 20 студентов, а выбрать надо k = 2 студента. Находим число сочетаний:
Обратите внимание: красным цветом отмечены множители, входящие в разные факториалы. Эти множители можно безболезненно сократить и тем самым значительно уменьшить общий объем вычислений.
Задача. На склад завезли 17 серверов с различными дефектами, которые стоят в 2 раза дешевле нормальных серверов. Директор купил в школу 14 таких серверов, а сэкономленные деньги своровал и купил дочке шубу из меха соболя за 200 000 рублей. Сколькими способами директор может выбрать бракованные серверы?
Видео:Теория вероятностей | Математика TutorOnlineСкачать
В задаче довольно много лишних данных, которые могут сбить с толку. Наиболее важные факты: всего есть n = 17 серверов, а директору надо k = 14 серверов. Считаем число сочетаний:
Красным цветом снова обозначены множители, которые сокращаются. Итого, получилось 680 комбинаций. В общем, директору есть из чего выбрать.
Как видите, число сочетаний из n по k считается достаточно просто. Проблема в том, что многие школьники никогда не работали с факториалами. Для них это новый и незнакомый математический объект, и для его освоения требуется некоторая тренировка.
https://www.youtube.com/watch?v=8-h9rPT08Hs
Хорошая новость состоит в том, что во многих задачах формулы Cnk оказывается вполне достаточно для нахождения ответа. Но есть и плохая новость: в тех редких случаях, когда нужны дополнительные правила, решение задачи резко усложняется. Эти правила мы сейчас и рассмотрим.
Закон умножения
Закон умножения в комбинаторике: число сочетаний (способов, комбинаций) в независимых наборах умножается.
Другими словами, пусть имеется A способов выполнить одно действие и B способов выполнить другое действие. Путь также эти действия независимы, т.е. никак не связаны между собой. Тогда можно найти число способов выполнить первое и второе действие по формуле: C = A · B.
Задача. У Пети есть 4 монеты по 1 рублю и 2 монеты по 10 рублей. Петя, не глядя, достал из кармана 1 монету номиналом 1 рубль и еще 1 монету номиналом 10 рублей, чтобы купить сигарету за 11 рублей у бабули в подземном переходе. Сколькими способами он может выбрать эти монеты?
Итак, сначала Петя достает k = 1 монету из n = 4 имеющихся монет номиналом 1 рубль. Число способов сделать это равно C41 = … = 4.
Затем Петя снова лезет в карман и достает k = 1 монету из n = 2 имеющихся монет номиналом 10 рублей. Здесь число сочетаний равно C21 = … = 2.
Поскольку эти действия независимы, общее число вариантов равно C = 4 · 2 = 8.
Задача. В корзине лежат 8 белых шаров и 12 черных. Сколькими способами можно достать из этой корзины 2 белых шара и 2 черных?
Всего в корзине n = 8 белых шаров, из которых надо выбрать k = 2 шара. Это можно сделать C82 = … = 28 различными способами.
Кроме того, в корзине имеется n = 12 черных шаров, из которых надо выбрать опять же k = 2 шара. Число способов сделать это равно C122 = … = 66.
Поскольку выбор белого шара и выбор черного — события независимые, общее число комбинаций считается по закону умножения: C = 28 · 66 = 1848. Как видим, вариантов может быть довольно много.
Закон умножения показывает, сколькими способами можно выполнить сложное действие, которое состоит из двух и более простых — при условии, что все они независимы.
Именно этой формулы многим не хватило для решения задачи B6 на пробном ЕГЭ по математике. Разумеется, существуют и другие методы решения, в которых комбинаторика не используется — и мы обязательно рассмотрим их ближе к настоящему экзамену. Однако ни один из них не сравнится по надежности и лаконичности с теми приемами, которые мы сейчас изучаем.
Закон сложения
Если закон умножения оперирует «изолированными» событиями, которые не зависят друг от друга, то в законе сложения все наоборот. Здесь рассматриваются взаимоисключающие события, которые никогда не случаются одновременно.
Например, «Петя вынул из кармана 1 монету» и «Петя не вынул из кармана ни одной монеты» — это взаимоисключающие события, поскольку вынуть одну монету и при этом не вынуть ни одной невозможно.
Аналогично, события «Выбранный наугад шар — белый» и «Выбранный наугад шар — черный» также являются взаимоисключающими.
Закон сложения в комбинаторике: если два взаимоисключающих действия можно выполнить A и B способами соответственно, то эти события можно объединить. При этом возникнет новое событие, которое можно выполнить X = A + B способами.
Другими словами, при объединении взаимоисключающих действий (событий, вариантов) число их комбинаций складывается.
Видео:Комбинаторика. Основные формулы (перестановки, сочетания, размещения) и примеры решения задач.Скачать
Можно сказать, что закон сложения — это логическое «ИЛИ» в комбинаторике, когда нас устраивает любой из взаимоисключающих вариантов. И наоборот, закон умножения — это логическое «И», при котором нас интересует одновременное выполнение и первого, и второго действия.
Задача. В корзине лежат 9 черных шаров и 7 красных. Мальчик достает 2 шара одинакового цвета. Сколькими способами он может это сделать?
Если шары одинакового цвета, то вариантов немного: оба они либо черные, либо красные. Очевидно, что эти варианты — взаимоисключающие.
В первом случае мальчику предстоит выбирать k = 2 черных шара из n = 9 имеющихся. Число способов сделать это равно C92 = … = 36.
Аналогично, во втором случае выбираем k = 2 красных шара из n = 7 возможных. Число способов равно C72 = … = 21.
Осталось найти общее количество способов. Поскольку варианты с черными и красными шарами — взаимоисключающие, по закону сложения имеем: X = 36 + 21 = 57.
Задача. В ларьке продаются 15 роз и 18 тюльпанов. Ученик 9-го класса хочет купить 3 цветка для своей одноклассницы, причем все цветы должны быть одинаковыми. Сколькими способами он может составить такой букет?
По условию, все цветы должны быть одинаковыми. Значит, будем покупать либо 3 розы, либо 3 тюльпана. В любом случае, k = 3.
В случае с розами придется выбирать из n = 15 вариантов, поэтому число сочетаний равно C153 = … = 455. Для тюльпанов же n = 18, а число сочетаний — C183 = … = 816.
Поскольку розы и тюльпаны — это взаимоисключающие варианты, работаем по закону сложения. Получаем общее число вариантов X = 455 + 816 = 1271. Это и есть ответ.
Дополнительные условия и ограничения
Очень часто в тексте задачи присутствуют дополнительные условия, накладывающие существенные ограничения на интересующие нас сочетания. Сравните два предложения:
- Имеется набор из 5 ручек разных цветов. Сколькими способами можно выбрать 3 ручки для обводки чертежа?
- Имеется набор из 5 ручек разных цветов. Сколькими способами можно выбрать 3 ручки для обводки чертежа, если среди них обязательно должен быть красный цвет?
Чувствуете разницу? В первом случае мы вправе брать любые цвета, какие нам нравятся — дополнительных ограничений нет. Во втором случае все сложнее, поскольку мы обязаны выбрать ручку красного цвета (предполагается, что она есть в исходном наборе).
Очевидно, что любые ограничения резко сокращают итоговое количество вариантов. Ну и как в этом случае найти число сочетаний? Просто запомните следующее правило:
Пусть имеется набор из n элементов, среди которых надо выбрать k элементов. При введении дополнительных ограничений числа n и k уменьшаются на одинаковую величину.
https://www.youtube.com/watch?v=SLPrGWQBX0I
Другими словами, если из 5 ручек надо выбрать 3, при этом одна из них должна быть красной, то выбирать придется из n = 5 − 1 = 4 элементов по k = 3 − 1 = 2 элемента. Таким образом, вместо C53 надо считать C42.
Теперь посмотрим, как это правило работает на конкретных примерах:
Задача. В группе из 20 студентов, среди которых 2 отличника, надо выбрать 4 человека для участия в конференции. Сколькими способами можно выбрать этих четверых, если отличники обязательно должны попасть на конференцию?
Итак, есть группа из n = 20 студентов. Но выбрать надо лишь k = 4 из них. Если бы не было дополнительных ограничений, то количество вариантов равнялось числу сочетаний C204.
Однако нам поставили дополнительное условие: 2 отличника должны быть среди этих четырех. Таким образом, согласно приведенному выше правилу, мы уменьшаем числа n и k на 2. Имеем:
Задача. У Пети в кармане есть 8 монет, из которых 6 монет по рублю и 2 монеты по 10 рублей. Петя перекладывает какие-то три монеты в другой карман. Сколькими способами Петя может это сделать, если известно, что обе монеты по 10 рублей оказались в другом кармане?
Итак, есть n = 8 монет. Петя перекладывает k = 3 монеты, из которых 2 — десятирублевые. Получается, что из 3 монет, которые будут переложены, 2 уже зафиксированы, поэтому числа n и k надо уменьшить на 2. Имеем:
В обоих примерах я намеренно пропустил детали работы с факториалами — попробуйте выполнить все расчеты самостоятельно. Разумеется, для этих задач существуют и другие способы решения. Например, с помощью закона умножения. В любом случае, ответ будет один и тот же.
Видео:Математика без Ху!ни. Теория вероятностей, комбинаторная вероятность.Скачать
В заключение отмечу, что в первой задаче мы получили 153 варианта — это намного меньше, чем исходные C204 = … = 4845 вариантов. Аналогично, 3 монеты из 8 можно переложить C83 = … = 56 способами, что значительно больше 6 способов, которые мы получили в последней задаче.
Эти примеры наглядно демонстрируют, что введение любых ограничений значительно сокращает нашу «свободу выбора».
Элементы комбинаторики и теории вероятностей
Основными понятиями в комбинаторики являются понятия размещения, сочетания и перестановки. Введем их.
Определение 1
Всякий упорядоченный набор имеющий $k$ элементов, взятых из наперед заданных $n$ элементов без повторений, будем называть размещением из $n$ по $k$.
Математически, такое размещение обозначается и вычисляется следующим образом:
$A_nk=frac{n!}{(n-k)!}$
Определение 2
Всякий упорядоченный набор имеющий $n$ элементов, взятых из наперед заданных $n$ элементов без повторений, будем называть перестановкой из $n$.
Математически, такая перестановка обозначается и вычисляется следующим образом:
$P_n=n!$
Определение 3
Всякий неупорядоченный набор имеющий $k$ элементов, взятых из наперед заданных $n$ элементов без повторений, будем называть сочетанием из $n$ по $k$.
Математически, такое сочетание обозначается и вычисляется следующим образом:
$C_nk=frac{n!}{(n-k)!k!}$
Основные понятия теории вероятностей
Основными понятиями теории вероятностей являются понятия события и вероятности события.
Ничего непонятно?
Попробуй обратиться за помощью к преподавателям
Определение 4
Событием будем называть любое утверждение, которое может как произойти, так и не произойти.
Обычно события обозначаются большими английскими буквами.
Видео:02 Комбинаторика ЗадачиСкачать
Пример: $A$ – выпадение числа $6$ на кости.
В связи с тем, что событие может иметь две вариации исхода («произошло» и «не произошло») мы сталкиваемся с понятие вероятности такого события. Это понятие имеет $4$ основных определения.
Классическое определение.
Классическое определение связано с такими неопределяемыми понятиями как равновозможность и элементарность события. Интуитивно их можно понять на следующих примерах:
Равновозможность: При подбрасывании монеты она может упасть как аверсом, так и реверсом независимо от внешних условий. То есть можно сказать что вероятность выпадения одной или другой стороны по сути одинакова.
https://www.youtube.com/watch?v=k8B77jguqU8
Элементарность события: Если на кости выпадет число $4$, то это означает, что числа $1, 2, 3, 5$ и $6$ уже не выпали.
Определение 5
Вероятностью события будем называть отношения числа $n$ равновозможных элементарных событий исходного события $B$ ко всем элементарным событиям $N$.
Математически это выглядит следующим образом:
$P(B)=frac{n}{N}$
Геометрическое определение.
Геометрическое определение применяется для случая, когда количество равновозможных событий будет бесконечно. Здесь, для введения геометрического определения рассмотрим следующий пример.
Для игры дартс берем круг площадью $S$ и разбиваем его на несколько кругов. Какова вероятность, что дротик попадет в центральный круг? (Исключим здесь случаи полного непопадания в поле).
Очевидно что равновозможных событий здесь будет бесконечно (как и общих событий) так как круг содержит в себе бесконечное число точек.
Пусть площадь центрального круга равняется $s$. Тогда мы сталкиваемся с геометрическим определением вероятности такого события:
$P(B)=frac{s}{S}$
Статистическое (частотное) определение.
Классическое определение довольно часто не учитывает всех возможностей.
Рассматривая даже классический пример с бросанием кости мы пренебрегаем возможностью, что не выпадет никакого из шести чисел (кубик просто «остановится» на уголке).
Поэтому вводят следующее определение вероятности, учитывающее все возможности. Рассматриваем $N$ наблюдений. Пусть нужное нам событие при этом выпало $n$ раз. Тогда
$P(B)=lim_{N→∞}frac{n}{N}$
Видео:Решение задач по теории вероятностей | Часть 1Скачать
Аксиоматическое определение.
Данное определение задается с помощью аксиоматики Колмогорова.
Пусть $X$ — пространство всех элементарных событий. Тогда
Определение 6
Вероятностью события $B$ будем называть такую функцию $P(B)$, которая удовлетворяет следующим условиям:
- Данная функция всегда неотрицательна,
- Вероятность того, что произойдет хотя бы одно из попарно несовместных событий равняется сумме их вероятностей.
- Функция всегда меньше или равна $1$, причем $P(X)=1$.
Пример задач
Пример 1
В корзине лежат $10$ разных зерен для высадки цветов. Нам нужно посадить всего $4$ так как у нас есть всего $4$ горшка. Сколькими способами мы можем посадить цветы в эти горшки?
Решение.
Вначале нам нужно вытащить из корзины $4$ наугад попавшихся зерна. То есть здесь мы имеем дело с сочетанием из $10$ зерен по $4$.
Получаем:
$C_nk=frac{10!}{(10-4)!4!}=frac{10!}{6!4!}=frac{7cdot 8cdot 9cdot 10}{1cdot 2cdot 3cdot 4}=210$
Четыре же зерна посадить в $4$ горшка можно
$P_4=4!=24$
способами.
Для нахождения окончательного результата нужно перемножить эти два, получим:
$210cdot 24=5040$
Ответ: $5040$.
Пример 2
Найти вероятность того, что наугад вытащенная из колоды карта будет пиковой масти (сумма карт в колоде кратна $4$-м).
Решение.
Так как количество карт кратно четверке, то пусть всего карт будет $4k$. Тогда каждой масти карт будет $k$ штук (так как мастей $4$ и их количество одинаково).
При решении этой задачи будем использовать определение $5$. Во введенных нами обозначениях, получим что в определении $5$ мы будем иметь
Видео:Математика без Ху!ни. Теория вероятностей. Схема БернуллиСкачать
$N=4k,n=k$
Следовательно
$P=frac{k}{4k}=frac{1}{4}$
Ответ: $frac{1}{4}$.
🌟 Видео
Комбинаторика: перестановка, размещение и сочетание | Математика | TutorOnlineСкачать
Элементы комбинаторики. Правило суммы. Правило произведения. 9 класс.Скачать
Вся теория вероятностей для экзамена за 20 минут. ЕГЭ профильный, Базовый, ОГЭСкачать
10 класс, 49 урок, Случайные события и их вероятностиСкачать
Решение задач на теорию вероятности. Практическая часть. 9 класс.Скачать
Решение задач на теорию вероятности. Практическая часть. 9 класс.Скачать
Комбинаторика. Комбинаторные задачи. 10 класс.Скачать
Решение задач на теорию вероятности. Практическая часть. 9 класс.Скачать
Основы комбинаторикиСкачать
Классическая схема теории вероятностей. Комбинаторика. Часть 2Скачать
Теория вероятностей. Лекция 1. Часть 2. Комбинаторика. Перестановки. Размещения.Скачать
КОМБИНАТОРИКА теория вероятности математикаСкачать
18+ Математика без Ху!ни. Теория вероятностей, часть 1.Скачать